Environmental Plans and Procedures
OMM and SWPPP

Permit # VAG110048

209 Krete Ln. New Canton, Va. 23123
Contents

OMM .......................................................................................................................... 2

O&M practices for wastewater treatment ................................................................. 2

Chemical and material storage .................................................................................. 2

Methods for estimating process wastewater flows .............................................. 2

Solids management and disposal procedures .......................................................... 2

Temporary and long-term facility closure plans .................................................. 2

Testing requirements and procedures ................................................................. 2

Recordkeeping and reporting requirements ...................................................... 3

Duties and roles of responsible officials ............................................................ 3

SWPPP ....................................................................................................................... 4

Pollution Prevention Team ...................................................................................... 4

  Team Leaders: ....................................................................................................... 4

  Team Members: .................................................................................................... 4

Potential Pollutant Sources ..................................................................................... 5

Spills and Leaks ...................................................................................................... 6

Preventative Maintenance ..................................................................................... 6

Spill Prevention and Response Procedures ......................................................... 6

Facility Inspections ............................................................................................... 6

Employee Training ................................................................................................ 6

Sediment and Erosion Control/Management of Runoff .................................. 6

Comprehensive Site Compliance .......................................................................... 6
OMM

**O&M practices for wastewater treatment**
Process water is generated on this site from truck cleaning and drum washout. Both of these operations are directed into the sediment pond which is kept well below discharge level.

**Chemical and material storage**
Admixture tanks used in concrete production and the fuel tank are located inside the tank building.

The fuel tank is a double walled tank.

Truck Cleaning Solution is stored inside the tank building.

Truck lubricants are stored in the Maintenance Shop.

Stone and Sand piles are maintained in 3 wall bins.

Cement and Flyash are stored in silos.

**Methods for estimating process wastewater flows**
Process water is not discharged from this site, so no flow is estimated.

**Solids management and disposal procedures**
Solids come from returned concrete, site housekeeping, and truck cleaning.

They are all directed to the sediment pond with is cleaned as needed to maintain freeboard.

The solids are disposed of at the landfill or when possible sold/used as fill.

**Temporary and long-term facility closure plans**
The site if operating infrequently will have personnel at the facility from time to time to check the condition of the site.

In the event of a long term closure,

- The materials would be moved to another Allied Concrete site.
- Basins would be filled or covered as appropriate.
- Facility would be secured to prevent unauthorized access.

**Testing requirements and procedures**
The site Outfall does not discharge, so Annual DMRs are submitted as No Discharge.

If it was determined that there was a discharging outfall the following procedure would be used:
The DMR sample would be taken within the first 30 minutes of discharge from Outfall using a sample container\textsuperscript{iii}, a pH reading\textsuperscript{iv} would be taken and recorded immediately using a temperature compensating pH meter\textsuperscript{v}. The sample would then be stored in a cooler with ice and transported to the lab\textsuperscript{vi} to be tested for TSS. These findings along with flow calculation\textsuperscript{vii} would be recorded on the DMR and sent into DEQ on an annual basis.

QV monitoring would be taken within the first 30 minutes of discharge, the sample checked for clarity, odor, color, floating solids, settled solids, suspended solids, foam, oil sheen, and other indicators of storm water pollution. Also any probably sources of storm water contamination would be recorded.

**Recordkeeping and reporting requirements**

Freeboard is done during each production day by the batcher. It is estimated to be either over 12” or reported as needing immediate attention. Results are recorded on the online Freeboard log\textsuperscript{viii}. Results can be accessed through the batch PC.

Quarterly Site Inspections are conducted once each quarter by the Safety Environmental Manager. Once per year this inspection should be conducted during a qualifying storm event. Results are recorded on the QI form. They are then scanned and made available on the Batch PC.

Annual Compliance/Unauthorized Discharge Evaluations are conducted once per year by the Safety Environmental Manager with the Plant manager present if possible. Results are recorded on the Annual Comp Eval form and the Unauth Discharge Eval form. They are then scanned and made available on the Batch PC.

As there is no discharge at the Outfall the DMR is filled out stating no discharge and sent in. In the event that there were a stormwater discharge Outfall, the procedure would be as follows:

DMR samples would be taken once per year during a qualifying storm event by the Safety Environmental Manager. The sample data would be recorded on a DMR Sample Log, and a Chain of Custody would be completed for it to be delivered to the Lab, and a Flow Calculation Spreadsheet would be used to calculate flow\textsuperscript{ix}. Once the results return a DMR form (from the permit) would be completed and sent into DEQ no later than the 10\textsuperscript{th} of January. All documents would be scanned and made available on the Batch PC.

Any person sampling would have completed an Initial Demonstration of Capability for pH, the results of which would be available on the Batch PC.

Annual Thermometer Calibration Records are available on the Batch PC.

Training records and training outline are available on the Batch PC.

**Duties and roles of responsible officials**

Duties and Roles are outlined in the Pollution Prevention Team.
SWPPP

Pollution Prevention Team

Team Leaders:
BJ Barbrow, Safety and Environmental Manager and the Plant Manager

Team Leader Responsibilities

The Team Leader is responsible for overall content and implementation of the SWP3. Potential non-compliance areas or concerns are presented to the team leader by other team members. The Team Leader will ensure that changes to facility drainage, exposed materials, spill response, pollution control measures, inspections and training are incorporated into the plan.

Team Members:
Batch Person, Yard Man, Drivers

Team Member Responsibilities

Team members will responsible for implementing and following the procedures outlined in this plan. This includes checking site condition, reporting any spills or releases with a potential to pollute storm water, directing and performing any housekeeping tasks, and report to the Team Leader any permit compliance issues or recommendations for improved BMPs.
## Potential Pollutant Sources

<table>
<thead>
<tr>
<th>Activity</th>
<th>Potential Pollutant</th>
<th>BMPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck Maintenance</td>
<td>Lubricants, fluids</td>
<td>Maintenance is performed in designated area, and area cleaned as needed. Absorbent materials are available if needed.</td>
</tr>
<tr>
<td>Filling Bins/Unloading aggregates</td>
<td>Natural Sand, Crushed Stone, Manufactured Sand</td>
<td>Aggregates are unloaded to aggregate holding areas, and materials are pushed into piles. Bin filling operations use a front end loader. The bucket should be filled and excess shaken off at the pile.</td>
</tr>
<tr>
<td>Truck Loading</td>
<td>Cement, Aggregates, Admixtures</td>
<td>The truck is backed into a shrouded area and (with proper truck alignment) the material is put into the truck through a boot to ensure the material goes into the truck. The shroud has a fugitive dust collection system. The area (including tracked materials) will be cleaned as needed, no less than once per week.</td>
</tr>
<tr>
<td>Truck Washing</td>
<td>Process water, truck cleaning agents</td>
<td>Truck cleaning operations are performed in an area that directs all process water (rinse water) into the no discharge sediment pond.</td>
</tr>
<tr>
<td>Unloading to Silo</td>
<td>Cement, Fly Ash</td>
<td>Silos are filled via a pipe that leads to the top of the silo. A tanker connects to this with a flexible rubber hose. The dust collector on the silo allows venting while filtering out any potential dust. The person unloading the tanker is responsible for ensuring that all dust filtration systems are operating properly during the unloading process.</td>
</tr>
<tr>
<td>Fueling</td>
<td>Diesel</td>
<td>Trucks are fueled off site; the loader is fueled onsite from a fuel pump in the fueling area. Employee is to monitor the fueling to prevent overfill</td>
</tr>
</tbody>
</table>
Spills and Leaks
No significant spills or leaks have occurred on this site.

Preventative Maintenance
Team members should note any deficiencies in the containment areas and report them to the team leader. During the quarterly site inspections, containment areas are checked for deficiencies.

Spill Prevention and Response Procedures
Chemicals that have the potential for spilling are stored in secondary containment as outlined in Chemicals and material storage in the OMM portion. If a spill were to occur, sand would be used to control any spilled chemicals. It would then be disposed of according to the manufacturer's recommendation, and in compliance with local ordinances. In the event of a spill contact:

BJ Barbrow (540) 718-4862          Safety/Environmental Manager
Pete Hawes (540) 480-2763         Safety Director
Clay Hubbard (434) 249-2213       Operations Manager

Facility Inspections
Facility Inspections are done quarterly. Any deficiencies noted from these inspections are documented, brought to the attention of the rest of the team, and taken care of in a timely manner.

Employee Training
Employee training on the permit and this plan is conducted annually for all Allied Concrete Ready Mix/Maintenance/Block/Sales employees.

Sediment and Erosion Control/Management of Runoff
All runoff either leaves the site via sheet flow or enters the sediment pond. The sheet flow areas are concrete so erosion isn't a problem, and the sediment pond holds the water preventing erosion.

Comprehensive Site Compliance
Comprehensive site compliance evaluations will be conducted annually by the Environmental Team Leader. Results of the evaluation as well as the results of the Annual sample lab results will be shared with the team, for any deficiencies found a plan of action will be determined and documented (along with a time frame for correction) with the evaluation.

---

1 Hydraulic Oil, Grease, Motor Oil, Gear Oil
2 Sold and used are based on demand
3 1L Plastic Container
4 Standards Method 4500–H+B-2011
5 Thermometer calibrations are done annually. Results are available on the corporate server.
6 Environmental Systems Services in Culpeper
7 Drainage area acreage and impervious factor is estimated and used with the precipitation amount to calculate flow.
An effort should be made to check the freeboard at the same time of day during consecutive operation days.

\[
\text{Impervious Factor} \times \text{Total Area}\ (\text{ft}^2) \times \text{Rainfall}\ (\text{ft}) \times 7.48\ [\text{convert to gallons}] / 1000000\ [\text{convert to MGD}]
\]

Hydraulic Oil, Grease, Motor Oil, Gear Oil

Corrective Action Form

Corrective Action Form